Главная   Лекции   Студенту   Форум
 

Разделы сайта

Главная
ТММ
Математика
Теория вероятностей
Делопроизводство
Финансы и кредит
Экономика
Студенту
Контакты
Links

Реклама на сайте

 

 

Здесь могла быть ваша реклама...

 

 

 

     Рейтинг@Mail.ru

1. Основные понятия
2. Операции над событиями
3. Теорема сложения вероятностей
4. Условная вероятность
5. Теорема умножения вероятностей
6. Формула полной вероятности
7. Формула Бейеса
8. Повторение испытаний. Формула Бернулли
9. Случайные величины
10. Закон распределения дискретной случайной величины
11. Биноминальное распределение
12. Распределение Пуассона
13. Числовые характеристики дискретной случайной величины
14. Математическое ожидание
15. Свойства математического ожидания
16. Дисперсия
17. Вычисление дисперсии
18. Свойства дисперсии
19. Среднее квадратическое отклонение
20. Функция распределения
21. Свойства функции распределения
22. Плотность распределения
23. Свойства плотности распределения
24. Числовые характеристики непрерывной случайной величины
25. Равномерное распределение
26. Показательное распределение
27. Нормальный закон распределения
28. Функция Лапласа
29. Правило трех сигм
30. Центральная предельная теорема Ляпунова
31. Система случайных величин
32. Плотность распределения системы двух случайных величин
33. Условные законы распределения
34. Условное математическое ожидание
35. Зависимые и независимые случайные величины
36. Линейная регрессия
37. Линейная корреляция
38. Закон больших чисел
39. Неравенство Чебышева
40. Теорема Чебышева
41. Теорема Бернулли
42. Предельные теоремы
43. Характеристические функции
44. Теория массового обслуживания
45. Случайные процессы
46. Поток событий
47. Нестационарный пуассоновский поток
48. Поток Пальма
49. Потоки Эрланга
50. Цепи Маркова
51. Матрица переходов и граф состояний
52. Предельные вероятности
53. Процесс гибели – размножения и циклический процесс
54. Литература

 

 

 

 

 

Назад

 

Среднее квадратическое отклонение

 Определение. Средним квадратическим отклонением  случайной величины Х называется квадратный корень из дисперсии.

            Теорема. Среднее квадратичное отклонение суммы конечного числа взаимно независимых случайных величин равно квадратному корню из суммы квадратов средних квадратических отклонений этих величин.

            Пример. Завод выпускает 96% изделий первого сорта и 4% изделий второго сорта. Наугад выбирают 1000 изделий. Пусть Х – число изделий первого сорта в данной выборке. Найти закон распределения, математическое ожидание и дисперсию случайной величины Х.      

            Выбор каждого из 1000 изделий можно считать независимым испытанием, в котором вероятность появления изделия первого сорта одинакова и равна р = 0,96.

            Таким образом, закон распределения может считаться биноминальным.

 

            Пример. Найти дисперсию дискретной случайной величины Х – числа появлений события А в двух независимых испытаниях, если вероятности появления этого события в каждом испытании равны и известно, что М(Х) = 0,9.

            Т.к. случайная величина Х распределена по биноминальному закону, то

 

 

            Пример. Производятся независимые испытания с одинаковой вероятностью появления события А в каждом испытании. Найти вероятность появления события А, если дисперсия числа появлений события в трех независимых испытаниях равна 0,63.

            По формуле дисперсии биноминального закона получаем:

            Пример. Испытывается устройство, состоящее из четырех независимо работающих приборов. Вероятности отказа каждого из приборов равны соответственно р1=0,3; p2=0,4; p3=0,5; p4=0,6. Найти математическое ожидание и дисперсию числа отказавших приборов.

            Принимая за случайную величину число отказавших  приборов, видим что эта случайная величина может принимать значения 0, 1, 2, 3 или 4.

            Для составления закона распределения этой случайной величины необходимо определить соответствующие вероятности. Примем .

            1) Не отказал ни один прибор.

            2) Отказал один из приборов.

0,302.

            3) Отказали два прибора.

            4) Отказали три прибора.

 

            5) Отказали все приборы.

Получаем закон распределения:

 

x

0

1

2

3

4

x2

0

1

4

9

16

p

0,084

0,302

0,38

0,198

0,036

 

            Математическое ожидание:

            Дисперсия:

 

 

Copyright 2005 Int.

Информация о сайте  |  Контакты